(2x^2+7)+(61-x^2)+117=360

Simple and best practice solution for (2x^2+7)+(61-x^2)+117=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x^2+7)+(61-x^2)+117=360 equation:



(2x^2+7)+(61-x^2)+117=360
We move all terms to the left:
(2x^2+7)+(61-x^2)+117-(360)=0
We add all the numbers together, and all the variables
(61-x^2)+(2x^2+7)-243=0
We get rid of parentheses
-x^2+2x^2+61+7-243=0
We add all the numbers together, and all the variables
x^2-175=0
a = 1; b = 0; c = -175;
Δ = b2-4ac
Δ = 02-4·1·(-175)
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{7}}{2*1}=\frac{0-10\sqrt{7}}{2} =-\frac{10\sqrt{7}}{2} =-5\sqrt{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{7}}{2*1}=\frac{0+10\sqrt{7}}{2} =\frac{10\sqrt{7}}{2} =5\sqrt{7} $

See similar equations:

| 5x-74=3 | | z+23/5=8 | | z+235=8 | | 0.8^(x)=3.6 | | 5a=2.2 | | -n+(-4n)-(-4n)+6= | | r6+53=58 | | 16z+2z-8z=20 | | s7+ 63=69 | | m-51/4=91/2 | | 4g-g+4g-g=18 | | –76=–8s+–28 | | 23=m–9; | | n-21/2=21/2 | | 10n+3n-5n=8 | | 4(b)^2+3(b)^1/3=32.50 | | 8b+b^-1/3=32.50 | | r+193=9 | | 4n−20=8 | | 9t-5t-3t=12 | | 99=3(q−61) | | 4x-4=4+12 | | 6r+22=52 | | 6(d+7)=72 | | 80=8(p+3) | | 3^(n+1)=7 | | g5− 1=4 | | 52-22=x2 | | 3*7^(4x-2)+3=14 | | x^2-64=18x | | -10=-5(x+13) | | H(x)=-5x+5 |

Equations solver categories